2 Robert Dewar
A Pragmatic View of Formal Methods: the Hi-Lite Project 3

A Pragmatic View of Formal Methods:
the Hi-Lite Project
Robert Dewar

AdaCore and New York University
New York, USA

Abstract Formal methods can be applied in a variety of different modes. Even if the notion of proving an entire program correct is of limited applicability, we can still achieve more modest goals, such as proving specific properties of programs, and in fact there are existing examples where such approaches have been successful. The inability of formal methods to carry 100% of the burden means that the overall development process must rely on a combination of tools and techniques spanning the range from formal proof to testing. We thus need tools, languages, and development environments that allow easy integration of these various approaches. The Hi-Lite project aims to meet this need.

1 Introduction

‘In theory there is no difference between theory and practice. In practice there is.’

variously attributed to Yogi Berra, Albert Einstein, and others

One can imagine one of those HSBC bank’s ‘different viewpoint’ ads at airports featuring a page of dense specification, with three captions: Complicated, Interesting, Expensive: Complicated from the programmer with limited mathematics skills who is wary of formalism, Interesting from the academic computer scientist more interested in researching the theory of programming than actually writing programs in the real world, and Expensive from the aircraft manufacturing executive who already feels they spend a lot on software.

Everyone can agree on the importance of techniques that enable us to write reliable programs. Our very lives depend on the reliability of software in this age when there are millions of lines of critical code not only aboard every aeroplane we fly on, but also in the cars we drive, the medical devices we rely on, the cell phones we use to keep in touch, and the cameras we use to record important moments in our lives. A failure in any one of these could have serious adverse consequences, from losing a once in a lifetime chance to record a wedding, to losing one’s life in a car crash. The stakes are very high.

The term formal methods is a bit of a catch-all phrase covering many techniques and approaches. But the essence is to regard programs as formal mathematical objects, about which we can reason in a rigorous manner, using the tools and techniques that mathematicians have developed from centuries of experience. Potentially we can use such techniques in many different circumstances, but programs seem a particularly promising target, since they are constructed using artificial formal languages that in fact bear considerable similarities to the language used by mathematicians. The idea of being able to formally prove that a program is correct and reliable is definitely interesting, and we keep coming back to this fundamental notion. At a simpler level, we can at least perhaps prove important properties of programs, or use formal techniques to reason about programs, to find problems, and to provide information about existing programs.

In this paper, we will have a look at what has been achieved with existing techniques, and present some thoughts about what we may be able to do in the future. The more extreme visions of what can be achieved are probably unrealistic, but on the other hand, we can achieve (and indeed have achieved) remarkable results with current technology. Finally we will look at a new collaborative project, Hi-Lite, which attempts to bring together a number of existing techniques to allow more widespread use of effective approaches in the future.

2 Reliability and correctness

In the academic world, we often encounter a viewpoint that merges the concepts of reliability and correctness. That’s not surprising: it is easy enough to investigate and publish papers on theories of correctness, but reliability is much more elusive. Since we are taking a pragmatic viewpoint in this paper, it is worth spending some time pointing out that these two concepts are very different.

Correctness means that a program’s behaviour adheres to some formal model. Typically it is phrased in terms of conformance of a program to a formal specification. Reliability means that a program works well enough in practice to be acceptable. A program can most certainly be correct with respect to some specification, but still unreliable because of an incorrect or incomplete specification. On the other hand, a program may be reliable even though it has errors if the errors are infrequent enough or unimportant enough to be acceptable. I once had a student who had a summer job working for a major publisher in the United States. He noticed that their main mailing program had a bug that caused the first 500 names on the list to be discarded every time it was run. He proposed fixing this obvious error. His manager responded: ‘Don't touch that program, it’s totally reliable, there are millions of names on the list, and it doesn’t matter if we lose a few every now and then.’ It would be hard to imagine a formal specification for this program including such freedom.

A common viewpoint in the academic world is that all large software programs have serious errors, and that this is to be expected. I attended a lecture by a well known lawyer in the area of product liability who proposed that we need special laws for software since it was not possible to write software without serious flaws. Some time ago, I testified on behalf of a large computer manufacturer who was being sued by a customer who complained that the operating system was fraudulent because it contained serious errors. Basically we argued: ‘Judge, we know the OS was full of serious bugs, but that’s industry standard practice.’ The judge was unconvinced and found for the plaintiff, but the damages were minimal because the judge could not understand why the plaintiff had struggled with the obviously unusable system for ten years trying to work around problems. Today, decades later, we still find it perfectly normal that modern systems like Windows contain hundreds of serious flaws allowing our computers to become infected with spyware and other malware.

But this common viewpoint is itself flawed. In fact we have technology for developing reliable programs that from a pragmatic point of view works extremely well. The DO-178B certification standard (RTCA/EUROCAE 1992, Chilenski 2002, Souyris et al. 2009) used for commercial (and increasingly for military) avionics system is definitely not in the realm of formal methods. In fact it really has no formal basis at all. But it works well: we have never lost a life on a commercial airliner because of a software bug. That’s why the hypothetical airline executive looks with suspicion on formal methods: they sound like an expensive way of fixing something that does not need fixing. On the other hand, we have had some hair-raising close calls, such as the Malaysia Airline B777 incident in August 2005. As stated in the findings of an investigative report (ATSB 2007), ‘An anomaly existed in the component software hierarchy that allowed inputs from a known faulty accelerometer to be processed by the air data inertial reference unit (ADIRU) and used by the primary flight computer, autopilot and other aircraft systems.’ Moreover, we are increasingly using advanced techniques, such as Object-Oriented development and so-called modeling languages, where we cannot be so certain about relying on empirical experience. The development of the follow-on standard DO-178C (McHale 2009) addresses these areas, and interestingly opens the doorways to more extensive use of formal methods. We will discuss these specific points later.

To convince people that it makes sense to use formal methods, we need to recognize that the competition comes from software developed carefully following existing certification standards, rather than from typical commercial software produced with far less care. It is certainly a concern that so much critical software is developed using less than best practices. Most notably it is remarkable that we have no standards comparable to the avionics standards in the automobile area, even though typical cars have more lines of software aboard than a plane, and far more people die in car crashes. Has anyone died in an automobile accident because of a software bug? We simply do not know the answer to that question. Car crashes are not investigated with the same thoroughness as aeroplane crashes. The recent Toyota woes have served to draw attention to this issue, but we still don’t have anything like full information.
3 Safety and security

Broadly speaking, safety is about making sure that software does not kill people, and security is about making sure that bad guys cannot hack into software systems (possibly also killing people). When we developed the Ada 95 standard (ISO 1995), we decided that the language should address safety and security issues, and we made extensive attempts to interact with these communities. We were surprised to find that the two communities were very distinct and did not seem to talk to one another, despite the fact that their technical concerns seemed very similar.

Back in those days, security seemed a much less pressing problem. I was involved with the certification of the Boeing 777 software, and we were very concerned with reliability and safety, but I can't remember the issue of security ever coming up.

The modern world, with its increasing reliance on computer software for critical systems, and what seems at some points to be an unending supply of bad guys with significant software skills, has changed that picture considerably. It is hard to imagine any safety-critical program that is not also security-critical in this day and age, so security issues are always on the table. A while ago, there was a publicized concern about the Boeing 787 systems combining passenger internet traffic and critical avionics software on the same bus (FAA 2008). This was resolved, but the fact that this concern made the national press shows the shift in viewpoints.

Are avionics and traffic-control systems vulnerable to outside attack? Popular TV series like 24 and Alias certainly seem to think so. Perhaps that’s just in the realm of fiction, but we should remember that the first case of terrorists crashing a plane into a building occurred in a novel by Clancy years before 9/11. We can’t afford to be complacent.

From a technical point of view, safety and security concerns are certainly similar, but there is one very important difference. While we can get a reasonable confidence level from a safety point of view by empirically observing reliability (this plane has flown thousands of hours with not one observed safety defect), we are not nearly so ready to accept this kind of empirical evidence for security. The fact that someone could walk by the World Trade Center buildings every day for decades and see them still standing did not prove they were invulnerable to attack. When it comes to security, the use of formal methods becomes more attractive. It is comforting to be able to prove mathematically that a program meets its security requirements. We will discuss later on whether this is achievable in practice.

4 Proving entire programs correct

The goal of proving an entire program correct has always been an attractive one. Thirty years ago, there was huge enthusiasm in the academic sector for this vision, but then that interest seemed to die out, and certainly we did not see a transformation of industry standard practice. So what was the problem?

Proving a program correct typically means proving that the program meets the specification. This presumes that you have a full specification, and that it is sufficiently formal to be used as a basis of a mathematical proof. There are a number of fundamental problems that stand in the way of using proof of correctness as a technique to validate an entire program, and they centre on the issue of producing this full formal specification.

4.1 Difficulty and expense of producing a formal specification
A full formal specification of a program is a large complex object. Essentially it involves writing the entire program at a different level of abstraction using some formal specification language such as Z (Spivey 2001). This is not an easy task; i.e., it is a potentially expensive task. Part of the difficulty is that formal specification languages tend to be unreadable by anyone outside a small group of experts who are unlikely to also be experts in the problem domain. Grace Hopper recognized early on the value of a programming language being readable by a non-programmer, and when we see in a COBOL program something like:

IF BALANCE IS NEGATIVE THEN
 PERFORM SEND_BILL
ELSE
 PERFORM RECORD_CREDIT
END-IF
we can expect even someone at the management level to read such code and agree it looks reasonable. This goal is of course not always uniformly accomplished in the COBOL world, but on the other hand, it’s hard to imagine that many managers and designers of air-traffic control systems can comfortably read pages and pages of Z code.

Now if producing a full formal specification was a panacea, it might still be worth the expense, but as we discuss below, that’s not the case. So it is legitimate to question whether the gains we get from the considerable extra expenditure of effort justify the costs.

4.2 Errors in the specification

The specification is, as we have noted, basically a large program. Yes, it’s in a language with a high level of abstraction, which helps avoid low level coding errors, but on the other hand it’s a complex language understood only by a small number of experts, and it is usually impossible to test this large program. It is hardly surprising that large specifications themselves are prone to errors. Proving that our final program is equivalent to a specification with errors is not exactly what we had in mind. In practice, proving this equivalence does find and avoid programming errors, but experience shows that a significant number of problems in final products arise from errors in the specifications. It is not at all clear that making the specification more formal helps solve this problem, and indeed it may actually make things worse.

4.3 Incomplete specifications

Since specifications are written at a high level, they tend quite deliberately to omit low level implementation details, but in practice problems can easily arise at that level. During the first moon landing there was a serious last minute glitch in which the CPU became overloaded and was losing low-priority tasks. Luckily a priority scheduling system was used, so only noncritical tasks were lost, and the landing was successful. Later analysis showed that the problem stemmed from a change in procedures that had required switching on a particular system before the landing rather than afterwards, and this used up a significant number of CPU cycles. That sort of detail can lead to major problems, but is unlikely to be caught in the formal specification process.

4.4 Things that cannot be formally specified
Some important aspects of programs just do not lend themselves to formal specification. For example, if we are writing a compiler, a critical criterion of quality is the output of easily understandable informative error messages and effective error recovery. I see no way of specifying this at a high level of abstraction. We know what we mean (it is reminiscent of Steven Potter’s famous observation on pornography ‘I know it when I see it’). But how is that to be specified formally? We could specify the exact error messages we want, but then we are simply doing the job of writing a compiler at the specification level. After all, any program is in some sense a specification of its own behaviour, but the whole point of formal specification is to use a high level of abstraction without over-specifying.

Similarly, the requirement for a user interface that is simple and intuitive is often critical. An over-complex display on a pilot’s screen or an air traffic controller’s console may result in dangerous human errors. For another example, one of the Mars missions was lost because a measurement was input in the wrong units, which was not an error in the program per se, but could have been prevented by a clearer interface. Again, how can we formally specify what it means for a user interface to be intuitive? That’s a very tough problem.

4.5 Partial versus total correctness
When we talk of proving a program correct with respect to its specification, we are almost always talking about proving partial correctness. In functional terms, that means that if the program or some particular piece of the logic terminates, then it terminates with the right result. Proving termination is often much more difficult. Now in some circumstances this is not so critical. For example, if we can prove a compiler partially correct, we know that if the compiler terminates then it has produced a correct program. If there is a case where the compiler never terminates, that’s an annoying bug, but it does not lead to an incorrect program.

On the other hand, in real-time systems termination is often vital. When the pilot moves the control stick, we have to be sure that appropriate systems respond. In fact, not only is termination a critical issue here, but in hard real-time systems of this kind, critical components must terminate within a specified period of time. A lot of work has been done on proving real-time performance in this sense, but it definitely complicates the process substantially, and in practice we usually rely on a combination of testing and safety margins to gain confidence in timing behaviour.

4.6 Programming language specification
When we write a formal specification, we certainly use some language that itself has a complete formal definition. But the final program is likely to be written in a language that lacks a formal specification. There have been some attempts to use formal definition techniques for real languages (notably the ANSI PL/I standard and the Algol-68 definition), but such formal definitions are notoriously difficult to read, which means that few people read them, which means they are more likely to contain errors. None of the languages in common use (C, C++, Ada, Java, etc.) have formal definitions, and, worse still, they are full of ambiguities where code that looks reasonable is in fact erroneous. Some languages are better than others. For example, Ada is much better defined than C. Nevertheless the full Ada language is still too large and complex and too ill-defined to be fully comfortable for formal development.
There have been attempts, more or less successful, to define suitable subsets. One example is MISRA C (MISRA 2004) but the definition is far from formal and complete. A much more successful attempt is the SPARK language (Barnes 2003) about which we will have more to say later. The success of SPARK derives from both the design objectives (it was always conceived to be used in the context of formal verification), and the fact that its starting point was Ada (with features such as scalar ranges that allow the programmer to specify useful properties of data objects).

5 Proving properties of programs

The previous section of this paper was rather discouraging, but it was the bad news preceding much better news. While it seems unlikely that the approach of full correctness proofs for entire programs will ever play an important part in practical development approaches, for the reasons we have discussed, the notion of proving certain properties of programs is much more promising. Actually we can be much more positive, this is not just a promise for the future: there are many examples where this approach of proving certain properties has been used successfully.
5.1 Proving freedom from run-time errors

A pervasive source of errors in programs comes from low-level run-time errors. Some interesting work at Microsoft (Moy et al. 2009, Hackett et al. 2006) discusses the buffer overflow problem in C, and describes a semi-formal approach that has been used in conjunction with Windows code to find thousands of potential buffer overflows. These buffer overflows have often been the source of security weaknesses. For example one (in)famous worm program worked by sending a huge subject for an email. The programmer had defined a large array (‘no one could possibly need a subject longer than xxx’) and did not check for overflow of this array. The attacking program sent a long subject that was in fact executable code and arranged to overwrite a stack return address to point to and execute this code. After buffer overflows, the second most serious source of errors in C programs has to do with integer overflows, because an integer overflow on the size of a buffer readily translates into a buffer overflow. In C, integer overflows are particularly tricky to prevent, because of standard practice (which does not distinguish between numbers and their machine representation) and overly complex rules of implicit conversions.

Ada programs can have the same kind of errors. A buffer overflow corresponds to an attempt to index an array with an out-of-bounds value, and of course integer overflow is still possible. The difference is that in Ada, both situations result in well defined behaviour, namely the raising of run-time exceptions.

Obviously you don’t want such run-time errors to occur. If they do occur, then the Ada approach (termination with an error message saying that an exception has been raised) is generally preferable to a random malfunction. However, it is pretty useless for a pilot of a plane to see a message on the command console announcing that a Constraint Error exception has been raised in critical avionics guidance code.

Obviously we want to be sure that a program is entirely free of such run-time errors. So what about the approach of constructing a mathematical proof of freedom from such errors? We don’t need a specially written formal specification, so most of the potential problems described above (Section 4) disappear. We do need a well-defined target language, so that we have a proper formal definition of what we mean by a run-time error.

It turns out that this approach is not only promising, it is practical and has been used on some large real-life applications written in SPARK. SPARK is well suited to this technique, because it is well-defined, has the same semantics as Ada for run-time errors, and is designed to be used in a formal proof context. Several large programs, including a real-time air-traffic control system and a helicopter cockpit control program, have been proved to be free from run-time errors (Chapman 2000). In C terms, this means these programs cannot possibly suffer from buffer overflow or integer overflow problems. That’s a pretty impressive claim to be able to make. If Microsoft were able to prove the same level of reliability for the Windows code, we would undoubtedly have far fewer security problems with this software. Unfortunately, you really have to start from the beginning with such an approach in mind. Trying to retrofit this to 50 million lines of existing code is an overwhelming task.

5.2 Proving security properties
Security-critical programs have an interesting property: they don’t have to work! That’s right; it’s annoying but not a security-problem for such a program to malfunction provided that it does not violate security requirements. For instance a program guarding access to a secure facility might fail to admit the four-star general with full clearance. That will make him hopping mad but will not violate security. On the other hand if a janitor can get in because his cell phone somehow unlocks the security controls accidentally, then that’s a problem. If an ATM machine fails to respond to a user’s attempt to insert a debit card, then that’s annoying, but if it displays the contents of someone else’s account and allows access, then that’s a serious security violation.

If we are writing a security-critical program, we can envision a partial specification that falls far short of the difficult attempt to specify the entire program. This partial specification includes only security requirements. The formal proof then can simply focus on making sure that the program does not violate these specific requirements, and we can use more conventional means, e.g. exhaustive testing as discussed below, to verify reliable behaviour (we don’t want the general to get mad!)

The attractive aspect of this approach is that it is practical without incurring the expense and difficulty of producing a full formal specification and proving it correct. Furthermore, it is in the system’s security properties where we most feel the advantage of a formal proof. Proving that a system is impregnable to specified kinds of security failures is far more convincing than any amount of testing. It is interesting to note that MILS (Alves-Foss et al. 2007) at the highest Evaluation Assurance Levels (EAL 6 and 7) requires the use of formal approaches.

Again, we are not talking about some future technology. Using appropriate tools such as SPARK, it is quite practical to achieve these proofs of correctness. At the system level, both Wind River Systems and Green Hills have announced operating system kernels meeting very high level MILS EAL levels with formal proofs of the related security properties. For an interesting use of SPARK in this connection, see details of the Tokeneer project (AdaCore 2009). This was a demonstration program sponsored by NSA to show that it was practical to create application software and prove that it meets the highest security levels. The Tokeneer system controls entry to restricted systems using biometrics. What is particularly interesting is that the cost of producing this software was comparable to, or even somewhat less than, the cost of using conventional techniques. That’s really important. If formal methods = lots of money, it will be hard to make much headway. If formal methods = cost savings, then people are much more interested.

6 The role of testing

So far we have concentrated on the role of formal proofs, but we should not neglect the importance of testing as part of the software development process. First of all, as we have described, there are limits to what we can achieve by formal proof. Second, even for a system proved correct, we will increase our confidence if we have done at least some testing. I don’t think I am willing to get on a plane where the only assurance of the reliability of the software is some big mathematical proof, and the software has never been actually run before. Of course in some cases (moon landings, nuclear missile defences, dealing with reactor meltdown, etc.), you can’t test under real deployment circumstances, but you can still gain important information from testing under simulated conditions.

Much of the effectiveness of the DO-178B certification standard for avionics comes from its prescription of extensive, complete, specified approaches to producing comprehensive sets of tests. Just constructing these tests often turns up problems with requirements, or discrepancies between requirements and implementation, and of course running the tests finds more such discrepancies on the one hand or gives us a considerably higher level of confidence on the other hand. Of course testing can never be comprehensive (the Malaysia Airline incident mentioned in Section 2 turns out to be a real example of a software bug escaping detection despite comprehensive testing).

In an ideal world where cost is no object, we would prefer to do comprehensive testing as well as proof where practical using formal methods. However, that sounds expensive, and you are unlikely to make much headway if that is your approach. The airline executive in charge of cost-control will not listen to you, and historically there has been some antagonism to formal methods based on this concern of increased costs.

On the other hand, if you can show that using formal proof techniques can reduce the burden of testing or other required activities, so that the costs are the same, or perhaps lower, then you have got the attention of that executive. At least that is the experience at Airbus, where unit proofs have replaced unit testing in some cases (Souyris et al. 2009).

DO-178C will likely specifically admit the possibility of replacing testing with formal proofs in some specified circumstances. To get an idea of what is possible, let’s look at one particular problem, namely dynamic dispatching. In Object-Oriented programs you declare a hierarchy of types derived from parent types and inheriting their properties. A dispatching call might appear in the code simply as:

Object.Draw (x, y);

The problem is that Draw may at run-time execute any one of a whole collection of different methods or subprograms depending on the run-time nature of Object. That’s a problem for testing, because we have to test all possibilities. If there are 20 different possibilities for Draw, we should test all of them, because we don’t know what Object will be at run-time. But constructing such tests may be impractical. Not only is producing 20 separate tests for each such call an alarming prospect in itself, but constructing the tests may be impossible because of logical constraints on the possible values of Object at this particular point in the program.

An approach currently being examined in the context of DO-178C is to require the members of a type hierarchy to obey the Liskov Substitution Principle (Liskov and Wing 2001). This is a formalization, in terms of preconditions and postconditions, of the principle that the behaviour of a derived member should be similar in a formal sense to its parent’s behaviour, so if the Draw call works for one, it is guaranteed to work for all.

This is a well known approach, but how do we know that the members of a hierarchy obey this principle? We could conceivably try to demonstrate this with testing, but that’s not easy. It may be much easier to use formal proof techniques to prove this limited property.

This is just one example where testing and proof can work together rather than be seen as antagonistic approaches. Any comprehensive approach to the use of formal methods in development scenarios must properly accommodate the integration of testing. As we have mentioned in the case of security-critical systems, we can envision proof techniques being used to address specific security issues, and comprehensive testing to address the general reliability issues.

7 Using formal approaches to reasoning about existing programs

So far, we have concentrated on the notion of formal proof, but there is another interesting application of formal reasoning techniques, and that is to examine existing programs. Humans do this all the time using informal reasoning. What can be achieved by adding formal mathematical reasoning, carried out by automated software, to this process?

The current interest in static analysis programs such as PolySpace and CodePeer shows that such an approach can indeed be valuable. This is typically an after-the-fact application of formal reasoning. It is not easy at this stage to add full formal proof, e.g. of freedom from run-time errors, but it is most definitely practical to look for some cases of run-time errors. A tool that finds a significant fraction of buffer-overflow errors in a C program is definitely useful, even if it can’t guarantee to find them all. It won’t eliminate the need for comprehensive testing, but finding errors earlier can often significantly reduce costs and improve reliability. One way of looking at these tools is that they provide an automatic version of traditional code review techniques (Ganssle 2010, Taft and Dewar 2009).

In addition to looking for errors, such analysis programs can usefully find information about existing programs that can be very helpful. CodePeer, for example, has the advantage of starting with Ada, which is easier to reason about because the programmer provides more information (e.g. the allowed ranges of all integer types). This tool can generate preconditions and postconditions, which can be very useful in understanding what a subprogram actually does, as opposed to what it says it does in incomplete or inaccurate comments. CodePeer can also generate test vectors suggesting ranges of values of input variables needed to achieve complete coverage.

If you are following DO-178B to the letter you never do any reverse engineering of this kind, since you can generate your tests solely from the requirements and not from the code itself. At the other extreme you might be working with a legacy system that you would like to certify, in which case everything needs to be reverse engineered. In real life, many programs fall between these two extremes, and tools like CodePeer can be very valuable in this process. For example, in the US, the FAA is being much stricter these days about requiring full DO-178B certification of military planes such as UAVs flying through civilian space. In theory we could redo the avionics from scratch to comply with DO-178B, but in practice we use some degree of reverse engineering on existing code. Indeed, it is not clear that restarting from scratch would be ideal, since it would lose the confidence that comes from years of experience with the existing code base.

Further discussions of static analysis can be found in (Fisher 2007, Taft and Dewar 2009, Bessey et al. 2010, Chess and West 2007). For an interesting specific example, see (Moy and Wallenburg 2010) which discusses the application of static analysis to Tokeneer. This investigation found a number of potential bugs. None of these affected the proved security properties, but this is an interesting example of synergy between different approaches to the use of formal reasoning.

8 Putting it all together: the Hi-Lite project

As discussed above, formal reasoning about programs can play an important part in the development of reliable programs, and indeed it seems clear that increased use of and reliance on formal methods is happening now, and will continue to be more important in the future. However, it also seems clear that testing will continue to play a significant role, since some properties can only be addressed in practice by testing.

This means that our methodology for program development must integrate the use of formal methods at different levels (formal proof of properties, reasoning about existing programs), with conventional systematic testing. In particular, it seems clear that integration testing cannot be eliminated, and unit testing as an adjunct to the use of formal methods will continue to play an important role.

If we accept that our development methodology must integrate these diverse approaches, then we need tools and languages that address this integration. At the current time, we have a mix of separately developed tools and techniques that do not integrate well. Let’s in particular look at the programming language issue. At present we typically have to deal with multiple notations and environments that make it hard to take full advantage of possible interactions between tools.

As an example, consider the role of preconditions. The notion of preconditions, which specify a set of requirements that must be met on entry to a particular piece of code, typically a function or procedure, is an old one, which has appeared in many contexts. Preconditions can potentially serve a number of different purposes.

First, they can act as formalized comments. Compare the following:

procedure Verify_Pressures (Inner, Outer : Pressure);

-- Note: on entry Inner must always be greater than Outer

procedure Verify_Pressures (Inner, Outer : Pressure) with
 Pre => Inner > Outer;

We most certainly prefer the second form. Precise notations are always preferable to the vagaries of natural language if we can find a clear way to write things, as in this case. Even more importantly, comments are notoriously hard to keep up to date (testing does not test comments, and formal reasoning about comments written in English is definitely more in the science fiction realm). On the other hand, you have to keep preconditions up to date, or tests will fail.

Second, they simplify and extend the utility of testing. Preconditions can be compiled into actual run-time checks that will fail in a clear manner if the preconditions are not met. Such failures may help to locate potential or latent bugs which would not otherwise show up. The case of latent bugs is particularly interesting. You may have a case where, due to the particular code in place, no test could be written that fails if the precondition test is omitted, but if legitimate later changes are made to the procedure, then failure to meet preconditions could cause problems at some call site. Such problems are a major issue in maintenance programming, and being able to catch them before they occur can lead to significant cost savings and improved reliability.

Third, they provide a focus for formal proof systems. For calls, the task is to formally prove that the preconditions are met. For the procedure or function, the task is to prove that satisfaction of the preconditions is sufficient to guarantee required properties, e.g. freedom from run-time errors. This allows proofs to be modularized, which is helpful from a number of points of view. As an example of this focus consider the issues raised by DO-178C mentioned earlier in this paper. In addition to proving the basic adherence to the preconditions, we would also want to prove that derived types had preconditions that were proper weakening of preconditions (languages like Eiffel and Ada 2012 which provide for automatic weakening of preconditions can be helpful in this task).

Fourth, they provide a useful way for static analysis programs to summarize information they can determine about the current behaviour of the code. Normally we think of writing preconditions first, then writing code that adheres to these preconditions. But we can also generate preconditions automatically by looking at the actual code. These preconditions can then serve any of the first three purposes.

Now that we see the various purposes of preconditions, it is not surprising to find that they are addressed in the various tools we use, but there is no integrated systematic approach. In the AdaCore technology alone, we have four different syntaxes for preconditions:

· the Precondition pragma implemented some time ago in the context of Ada 2005

· the Pre aspect defined as part of the new Ada 2012 language

· the precondition annotations used in SPARK for formal verification purposes

· the syntax used by CodePeer to output preconditions deduced from the code.
Obviously, it would be desirable to have a single notation. An important goal of the Hi-Lite project is to define a common language of annotations covering preconditions and other similar aspects. By defining this common language Hi-Lite will allow industries to switch from an all-testing policy to a more efficient use of modern assurance methods. Much of this annotation language is expected to be included in the next version of the Ada language, Ada 2012, making it an international standard. The vision is to define a viable subset of Ada 2012, possibly with some extensions for further annotations. This will involve some interesting work on the relationship between static and dynamic approaches (Ernst 2003).

Hi-Lite will create a set of workflows for critical software verification based on existing tools already used in industry, some of which were mentioned earlier. These workflows will focus on separate verification through the use of annotations like the precondition shown above, which could be as beneficial to critical software development as separate compilation was beneficial to software development in general. The goal is to reduce the entry cost of formal verification sufficiently so that non-experts will be able to apply separate verification early in the development of systems in common languages like Ada and C. This is in contrast with current practice where formal verification is the responsibility of experts working with specialized formal languages of limited accessibility.

One critical asset in this effort is the decades of experience of industrial formal verification with SPARK, which Hi-Lite has leveraged to define an extended SPARK programming language and more powerful SPARK verification tools. The goal here is to extend the benefits of SPARK verification to software using common programming abstractions like containers and Object Oriented programming. Traceability of verification activities and results will facilitate software certification. It will also provide the basis for an easy-to-use verification system, which can help bring the advantages of agile software methods (Beck et al. 2001) to the certification arena.

It is expected that various products will be defined and commercialized based on these workflows by the owners of the base tools: AdaCore, Altran, CEA and INRIA. The large-scale experiments performed by industrial partners Altran, Astrium and Thales will certainly provide invaluable feedback concerning the benefits of this approach in an industrial context.

9 Conclusion

An earlier vision of total proof of correctness of programs as a panacea that would ensure totally reliable programs and eliminate the need for testing and the presence of errors in programs is certainly unrealistic now, and is likely to remain so indefinitely. However, it is increasingly clear that a more directed use of formal methods and proof techniques can be an extremely valuable approach. The history of work on programming is full of examples of someone coming along and saying, ‘I have a wonderful new technique for building programs, the only catch is that you have to throw out all your existing tools and techniques.’ A far more realistic approach is to recognize that programming is and will remain a complex and difficult task, and we need a variety of tools and techniques to address these problems in a world of increasing complexity and concerns. The Hi-Lite project is intended to provide a framework in which a variety of approaches spanning the range from formal proof to conventional testing can play easily and effectively together.

References

AdaCore (2009) The Tokeneer project. http://www.adacore.com/home/products/sparkpro/toke neer/?gclid=CK_x243uk6QCFYs65QodHVGXXQ. Accessed 11 October 2010

Alves-Foss J, Harrison W, Oman P, Taylor C (2007) The MILS architecture for high assurance embedded systems. Int J Embed Syst 2: 239-247
ATSB (2007) Australian Transport Safety Bureau, In-flight upset event, 240 km north-west of Perth, WA, Boeing Company 777-200, 9M-MRG, 1 August 2005, Report No 200503722

Barnes J (2003) High integrity software: the SPARK approach to safety and security. Addison Wesley

Beck K et al (2001) Manifesto for agile software development. http://agilemanifesto.org/. Accessed 11 October 2010

Bessey A, Block K, Chelf et al (2010) A few billion lines of code later: using static analysis to find bugs in the real world. Commun ACM 53(2):66-75. http://cacm.acm.org/maga zines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext. Accessed 11 October 2010
Chapman R (2000) Industrial experience with SPARK. ACM SIGAda Ada Letters XX(4)64-68

Chess B, West J (2007) Static analysis as part of the code review process. In: Chess B, West J Secure programming with static analysis. Addison-Wesley

Chilenski J (2002), Software development under DO-178B, Open Group http://www.opengroup. org/rtforum/jan2002/slides/safety-critical/chilenski.pdf. Accessed 11 October 2010
Ernst M (2003) Static and dynamic analysis: synergy and duality. In: WODA 2003: ICSE Workshop on Dynamic Analysis. Portland, OR

FAA (2008) Department of Transportation, FAA. Special conditions: Boeing model 787-8 airplane; systems and data networks security – isolation or protection from unauthorized passenger domain systems access. Federal Register

Fisher G (2007) When, why and how to leverage source code analysis tools. http://www.kloc work.com/resources/white-paper/static-analysis-when-why-how. Accessed 11 October 2010

Ganssle J (2010) A guide to code inspections. http://www.ganssle.com/inspections.pdf. Accessed 11 October 2010

Hackett B, Das M, Wang D, Yang Z (2006) Modular checking for buffer overflows in the large. In: ICSE ’06: Proc 28th Int Conf on Softw Eng, New York. ACM

ISO (1995) Ada reference manual ISO/IEC 8652:1995 with Technical Corrigendum 1. http:// www.adaic.org/standards/95lrm/html/RM-TTL.html. Accessed 11 October 2010

Liskov B, Wing J (2001) Behavioral subtyping using invariants and constraints. In: Formal methods for distributed processing. Cambridge University Press
McHale J (2009) Upgrade to DO-178B certification, DO-178C to address modern avionics software trends http://www.militaryaerospace.com/index/display/avi-article-display/369873/ar ticles/avionics-intelligence/features-and-analysis/2009/10/upgrade-to-do-178b-certification-do-178c-to-address-modern-avionics-software-trends.html. Accessed 11 October 2010

MISRA (2004) MISRA-C: Guidelines for the use of the C language in critical systems. http:// www.misra-c.com/. Accessed 11 October 2010

Moy M, Wallenburg A (2010), Tokeneer: beyond formal program verification. Embedded Real Time Software and Systems (ERTS2 2010), Toulouse, France

Moy Y, Bjorner N, Sielaff D (2009) Modular bug-finding for integer overflows in the large. http://research.microsoft.com/apps/pubs/?id=80722. Accessed 11 October 2010

RTCA/EUROCAE (1992), RTCA SC-167/EUROCAE WG-12. RTCA/DO-178B. Software considerations in airborne systems and equipment certification

Souyris J, Wiels V et al (2009), Formal verification of avionics software products. FM 2009. LNCS 5850. Springer

Spivey J (2001) The Z notation: a reference manual. http://spivey.oriel.ox.ac.uk/~mike/zrm/. Accessed 11 October 2010

Taft T, Dewar R (2009) Making static analysis a part of code review. Embedded Computing Design. http://embedded-computing.com/making-static-analysis-part-code-review. Accessed 11 October 2010
